cours d'analyse mathématique mathi I. — KQIATIONS AI \ VAIUATIONS. 7
Link:
eriozuzerio
Link:
eriozuzerio
Link:
eriozuzerio
I. — KQIATIONS AI \ VAIUATIONS. 7
I.;i \;ileiir aljsoliic de o,i(x) = 'A(x) — :-u{-^) est donc iiilci-ioure
ù 2î, |)Oiirvu qu'on ait n^p -f- m; z„(x) tend donc tiniforincniont
vers Z(.z' ) lors([ue n augmente indéfiniment.
Au lien d'un intervalle tel que (Xq, Xq -\- h), il est clair qu'on
pourrait aussi ap|)li({ucr la méthode à un intervalle (^o — h, Xo + /i);
si les approximations sont uniformément convergentes pour lesy„,
il en sera de même pour les z,/. Le théorème s'étend évidemment
à un système formé de n -\- p équations de la l'orme
dvi
-±- =fi(.^: 7 i^y-2, ■■ -,7,1), (1 = 1,2, ...,n), {k = \,i, ...,p).
dx
(4) < dz,,
où les fonctions y, 'j, •]> sont continues dans un certain domaine D,
et où les fonctions /" satisfont tlans ce domaine à la condition de
Lipschilz, relativement aux yi. Si 1 on applique à ce système la
méthode des approximations successixes, ces approximations sont
convergentes dans le même intervalle que les approximations pour
les jK/ seulement, et la convergence est uniforme (').
io9. Intégrales considérées comme fonctions des valeurs ini-
tiales. — rie|)r(Mii)iis [)our fixer les idées une é(piali()n différentielle
du premier ordre
(5). S =/'-•■'')•
OÙ nous supposerons que f{x^ y) satisfait aux conditions lialii-
tuelles dans un domaine 1) défini par les conditions
a — a 5 ^^ =£ -(- «, ^ — b'Lyy^-\-b.
l'renons un système de valeurs initiales (jToi >'(i) appartenant à
ce domaine. Les valeurs approchées successives de 1 intégrale yi ,
y-ii •••lyni •'• restent com[)rises entre [i — l> cl ^ H- /> pourvu
(') Les propriétés qui vont cire établies ilans les painsniphes suivants ont été
i'ohjet d'un assez grand nombre de travaux, qu'on trouvera cités dans un Mémoire
de M. E. Colton sur le sujet {/Julletin de la Société mathematù/uc, t. WWII,
1909, p. 2o'f et t. XXXVIII, 1910, p. -'i). I>a nicllinde (lue j'ai suivie lu- dill'ére
pas essentiellement de celle de M. Cotton.
8 CIl.Vl'ITIŒ \XI11. — I.MhtiRM.Ls IMlM.MKNr Vul-INKS.
que 1 on ail
il sulTil, pour s'en assurer, de reprendre le raisonnenienl du n" 380,
cl l'on voit de même que ^'«(^1 ^oî.I'o) tend uniformément vers
une limite '-!>(j7; .Tq, _i'o) dans le domaine D' défini par les conditions
a — a^x^:t -h a, a — «^aro^a-f-a, [i — b ^£y^,S.p -h b,
I ro— :i| + M|:r — .ro|<6.
Ce domaine Y)' contient en particulier le domaine D' délmi par
les inégalités
\t-ol\</,, |:ro-al</», |^.„_^I<-,
// riant le pins petit des deux nombres a et 7-^- Les \aleurs apj)ro-
chées successives y„{x\ Xq^ Vq) sont évidemment des fonctions
continues de x„, y^ dans ce domaine, et par suite l'inti'grale
y =^ ài^x; Xo,ya), qui se rêdiiil à y^, pour x = x^, est une fonc-
tion continue de x^ et de y».
Pour démontrer que celte fonction admet des dérivées par
rapport à j"„ et à yo, nous supposerons que /"(.r, t) admet une
dérivée continue /'(j", j^). Soient
ôà
d-b
9
Il
^7o
dr,
les dérivées donl nous voulons établir 1 existence ; si ces déri\ées
existent, elles vérilienl les (''(jualioi;s diOérenticlles
(«) ^=-'/r(^'r). ^ = "/:>(^'>')-
qui se déduiseiil iiiinK'ilialcnn'nl de r('(piali()n (,")). iXous sommes
donc conduits à ('liKlier le svslèiue des trois é(ju:iti(»ns dillVren-
lielles (5) et (G), et nnns pirntirous pour \alems iniliales
\)Oviv X = x^i. Or ce système est précisément de la forme étudiée
j)liis liant. La fonction y,/ .r, y) élant continue, nous poinons
a|>pli(pici- It; lliéoirme cpii a cl»'- ('l.ibli; la nit'lliode de .M. Picard,
apjilupiée à ce système, conduit à des approximations uniformé-
ment convergentes dans le même domaine D". l*our appliquer
I, — ÉCLATIONS MX VAIUATIONS. 9
cette métliode, nous prendrons pour premières valeurs approchées
y =j'u' c = I , « = o, et nous poserons
yy{x)=yo-r' I j\t,y^)dl,- ^, = 1— / fy(t,y^)c//,
«1 = — /(3"o, yo),
puis, d'une façon générale,
yn{x)=y^^ J /[t,y„-i(l)]dl,
Zn(x) = l^ f Zn-i{t)fy\t,yn-l{t)]dt,
f Un-x{t)fy[(,yn-x{t)\dt.
On a d abord
et ensuite
|;==.+ /"/U'.r-.(')J %=!</',
on déduit de ces relations
^ - ^. = /"/:,('. r..-.('))[^-=»-.(o|*,
et, par conséquent, on voit, de prociie en j)roclie, <pie 1 on a, <|uel
que soil n. -=^— = m„, -^ = c„.
Or la limite de y„ est l'intégrale y = 6(.r; ^'o, Vu); j)uis(pic :;„
el i(,i tendent unilornu'ment \ers leur-; limites, ces limites :; et //
représentent les dérivées partielles de l'inti-grale -lix: Xq, y^) par
rap|)orl à Xq et j^O' cl ces dérivées sont continues ilans le domaine
(pii a été délini plus haut.
Il' niAI'ITIli: XMII. — INTEGRALES INFINIMENT VOISINES.
Il esl lacile cl avoir les expressions de ces tlérivées. En ellet,
si Ion remplace j' par 'l{x; ^r,,, Vo) flans les équations (6), les
intégrales de ce syslème qui j)ronnonl les \aleurs initiales i et
— /('^o.J'o^ pour .r = .ro, s'oblicuiicnt ininiédialenient et nous
donnent
d'il I ./';K.'i'i',>ovro']rf'
d'il I fyl'.-^-!"t,.ro.y„^]'il
Ces formules prouvent que <b(x', x^, yo)i considérée comme fonc-
tion des valeurs initiales o^oj^o? satisfait à l'équation aux dérivées
partielles ( ' )
Le raisonnement peut s'étendre à un système dun nombre
(') Soit •i{x, y) une function continue, adnictlanl une dérivée continue ç, ;
la fonction
•-a
OÙ a est une constante, admet des dérivées partielles
T- = r(-^i.) .>'u)-i- / -^ -r- d^^ ■>- = / -17 -T^ dx,
Ox, ■ V ^ ^ " ' J^^ (^^ ,)j.^ oy, X 0'^^ Oy,
et. par conséquent, la fonction '/^{x„, _>'„) est une intégrale de récjuation aux
dérivées partielles
(7) ^.-^-^(•^-'••>'")^='^(-^«-^'")-
La fonction ■y(-c; x„, i'^) jouit des mêmes propriétés de réciprocité (]ue dans
le cas où la fonction /(x,y) est liolomorplie (II, n" ;5<SS). J)c la relation
V, = •îix,; X,, y„),
où ^', dési^'ne la valeur de rinlé;;rale pour x = x,, on tire inversement
.}■„= '^Cj:,,; x,,^-,),
car il y a évidemment réciprocité entre les deux couples de variables (x,„ y„),
(Xp y^). Kn supprimant les seconds indices, on voit ilonc que l'intégrale de
l'équation (5), ()ui est égale à y„ pour x = x,„ vcrilie la relation j)'„ = 'y (vT,,; x, y);
x„ étant supposé constant, on peut dire que l'équation précédente rcprésenle
l'intégrale générale de l'équation (5) dans le domaine qui a été déliui plus haut,
y„ étant la constante arbitraire.
Comments
Post a Comment